Inversion of Forest Leaf Area Index Based on Lidar Data

نویسندگان

  • Zuowei Huang
  • Yu Zou
چکیده

Leaf area index (LAI) is an important parameter of vegetation ecosystems, which can reflect the growth status of vegetation, and its inversion result has important significance on forestry system. The inversion values of forest LAI exists a certain deviation using traditional method. The airborne LiDAR technology adopts a new type of aerial earth observation method and makes it possible to estimate forest structural parameters accurately. In order to improve the estimation precision of leaf area index (LAI) of forest canopies, an analyzing method based on Lidar data was proposed in this paper. Firstly it conducts data filtering and calibration techniques, then relevant flight experiment and LAI inversion principle are introduced. Finally the inversion model was optimized based on statistic analysis method. LAI map well reflected spatial distribution pattern of LAI in experiment fields. The coefficient of determination (R) and root mean square error (RMSE) were selected as testing indicators to analyze the inversion results. According to our validation data, the related result showed that the established model was workable, forest LAI estimation are very close to the field-measured, And inversion results with measured LAI has a good consistency, shows high accuracy (R=0.8848,RMSE=0.2213), which provides a new method to estimate LAI with large regional scale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forest Canopy LAI and Vertical FAVD Profile Inversion from Airborne Full-Waveform LiDAR Data Based on a Radiative Transfer Model

Forest canopy leaf area index (LAI) is a critical variable for the modeling of climates and ecosystems over both regional and global scales. This paper proposes a physically based method to retrieve LAI and foliage area volume density (FAVD) profile directly from full-waveform Light Detection And Ranging (LiDAR) data using a radiative transfer (RT) model. First, a physical interaction model bet...

متن کامل

Three-stage inversion improvement for forest height estimation using dual-PolInSAR data

This paper addresses an algorithm for forest height estimation using single frequency single baseline dual polarization radar interferometry data. The proposed method is based on a physical two layer volume over ground model and is represented using polarimetric synthetic aperture radar interferometry (PolInSAR) technique. The presented algorithm provides the opportunity to take advantages of t...

متن کامل

Leaf Area Index (LAI) Estimation in Boreal Mixedwood Forest of Ontario, Canada Using Light Detection and Ranging (LiDAR) and WorldView-2 Imagery

Leaf Area Index (LAI) is an important input variable for forest ecosystem modeling as it is a factor in predicting productivity and biomass, two key aspects of forest health. Current in situ methods of determining LAI are sometimes destructive and generally very time consuming. Other LAI derivation methods, mainly satellite-based in nature, do not provide sufficient spatial resolution or the pr...

متن کامل

Geometrical and Structural Parameterization of Forest Canopy Radiative Transfer by Lidar Measurements

A forest canopy is a complex system with a highly structural multi-scale architecture. Physical based radiative transfer (RT) modelling has been shown to be an effective tool for retrieval of vegetation canopy biochemical/physical characteristics from optical remote sensing data. A high spatial resolution RT through a forest canopy requires several geometrical and structural parameters of trees...

متن کامل

Analysis of LAI in Iran based on MODIS satellite data

This study was performed to evaluate the extent of leaf area in Iran from (2002) to (2016) using Remote sensing. For this purpose, we extracted data collection and leaf area index for the Iranian territory from MODIS website. The database was established with programming in MATLAB software to perform mathematical and Statistical calculations repeated. After the analysis of the data in this soft...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016